

SIES College of Arts, Science & Commerce (Autonomous)

Department of Statistics

Faculty: Science Program: B.Sc. Course: Statistics

Syllabus for F.Y.B.Sc. (Credit Based Semester and Grading System with effect from the academic year 2018–2019)

SEMESTER I

THEORY

TITLE OF COURSE	DESCRIPTIVE STATISTICS I			
COURSE CODE	UNIT	TOPICS	LECTURES/ WEEK	CREDITS
	Ι	TYPES OF DATA AND DATA CONDENSATION	1	
PAPER I SIUSSTA11	II	MEASURES OF CENTRAL TENDENCY	1	2
	III	MEASURES OF DISPERSION, SKEWNESS & KURTOSIS	1	
TITLE OF COURSE		STATISTICAL MET	HODS I	
COURSE CODE	UNIT	TOPICS	LECTURES/ WEEK	CREDITS
	Ι	ELEMENTARY PROBABILITY THEORY	1	
PAPER II SIUSSTA12	П	DISCRETE RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS	1	2
	III	STANDARD DISCRETE DISTRIBUTIONS	1	

PRACTICAL

COURSE CODE	PRACTICALS BASED ON	LECTURES/ WEEK	CREDITS
SIUSSTAP1	SIUSSTA11	3	2
	SIUSSTA12	3	2

SEMESTER II

THEORY

TITLE OF COURSE		DESCRIPTIVE STATISTICS II		
COURSE CODE	UNIT	TOPICS	LECTURES/ WEEK	CREDITS
	Ι	CORRELATION AND REGRESSION ANALYSIS	1	
PAPER I SIUSSTA21	II	TIME SERIES	1	2
	III	INDEX NUMBERS	1	
TITLE OF COURSE	S	STATISTICAL METHODS II		
COURSE CODE	UNIT	TOPICS	LECTURES/ WEEK	CREDITS
	Ι	CONTINUOUS RANDOM VARIABLES	1	
PAPER II SIUSSTA22	II	STANDARD CONTINUOUS DISTRIBUTIONS	1	2
	III	ESTIMATION AND TESTING OF HYPOTHESIS	1	

PRACTICAL

COURSE CODE	PRACTICALS BASED ON	LECTURES/ WEEK	CREDITS
SIUSSTAP2	SIUSSTA21	3	2
	SIUSSTA22	3	

SYLLABUS FOR F.Y.BSc. UNDER AUTONOMY SEMESTER I PAPER I

Objectives :

- To be well versed with data collection techniques.
- To effectively use data visualization and summarization techniques to understand data.

Course Code	Title	Credits
SIUSSTA11	DESCRIPTIVE STATISTICS I	2 Credits
		(45 lectures)
UNIT I: TYP	ES OF DATA AND DATA CONDENSATION	15 Lectures
Types of data:	Qualitative and Quantitative data, Time series data and cross section	
data, discrete a and ratio.	nd continuous data. Different types of scales: nominal, ordinal, interval	
	oulation and sample. Census and Sample survey. Relative merits and	
	stical Organizations and their functions (CSO, NSSO). Survey findings.	
Primary data: (Concept of a questionnaire and a schedule. Secondary data: Sources.	
-	ustrating use of Statistics in different sectors.	
Diagrams: Bar	diagrams, Pie diagram	
Classification a	and Tabulation of categorical data up to order three. Association of	
attributes: Yule	e's coefficient of association (Q), Yule's coefficient of Colligation (Y).	
UNIT II: ME	ASURES OF CENTRAL TENDENCY	15 Lectures
Univariate free	uency distribution of discrete and continuous variables. Cumulative	
frequency distr	ibution. Graphical representation of frequency distribution by	
Histogram, Fre	quency curve, Cumulative frequency curves, Stem and leaf diagram.	
Central tenden	cy of data. Requisites of a good measure of central tendency. Positional	
averages: Med	an, Mode, Partition Values: Quantiles. Mathematical averages:	
Arithmetic me	an (Simple mean, trimmed mean, weighted mean, combined mean),	
Geometric mea	in, Harmonic mean. Merits and demerits of different measures.	
UNIT III: ME	ASURES OF DISPERSION, SKEWNESS & KURTOSIS	15 Lectures
Concept of dis	persion. Requisites of good measure of dispersion.	
Absolute meas	ures of dispersion: Range, Quartile Deviation, Mean absolute	
	dard deviation and corresponding relative measures of dispersion.	
Combined vari		
	moments and relationship between them.	
-	ewness and Kurtosis: Absolute and Relative measures of Skewness:	
	, Bowley's and Measure based on moments. Measure of Kurtosis based	
on moments.		
Box & Whisker	· Plot.	

SEMESTER I : PRACTICALS BASED ON COURSE SIUSSTA11

1.	Tabulation and Classification of Data
2.	Theory of attributes
3.	Data Visualization
4.	Measures of central tendency I
5.	Measures of central tendency II
6.	Measures of dispersion I
7.	Measures of dispersion II
8.	Moments, Measures of Skewness and Kurtosis I
9.	Moments, Measures of Skewness and Kurtosis II
10	. Use of MS Excel

PAPER II

Objectives :

- To understand the concepts of probability and probability distribution
- To fit an appropriate distribution using MS excel to data sets

Course	Title	Credits
Code		
SIUSSTA12	STATISTICAL METHODS I	2 Credits
		(45 lectures)
UNIT I: ELEMENTARY PROBABILITY THEORY		15 Lectures
Random experi	ment, Sample space, Event, Operation of events, mutually	
	exhaustive events.	
Classical (Math	nematical), Empirical (Statistical) definitions of Probability and	
	. Subjective probability.	
	ddition and Multiplication of probabilities.	
	of events, pair-wise and mutual independence of three events.	
	bability, Bayes' theorem.	
	CRETE RANDOM VARIABLES AND PROBABILITY	15 Lectures
DISTRIBUTI		
Concept of discrete random variable. Probability distribution and cumulative		
distribution function, definition and their properties.		
Expectation of	a random variable. Theorems on Expectation & Variance.	
Raw and Centr	al moments and their relationships (up to order four).	
Concepts of Sk	ewness and Kurtosis.	
Joint (Bivariate) probability distribution of two discrete random variables.		
Marginal and conditional distributions. Coefficient of Correlation. Independence		
of two random	variables.	
UNIT III: STA	ANDARD DISCRETE DISTRIBUTIONS	15 Lectures
Discrete Unifor	rm, Hypergeometric, Binomial and Poisson distributions: mean,	
	currence relation for probability, fitting of distribution.	
	oximation to Hypergeometric distribution. Poisson approximation	
to Binomial dis		

SEMESTER I: PRACTICALS BASED ON COURSE SIUSSTA12

1.	Probability
2.	Conditional Probability
3.	Discrete Probability distributions
4.	Bivariate probability distributions
5.	Standard Discrete distributions I
6.	Standard Discrete distributions II
7.	Use of MS Excel

SYLLABUS FOR F.Y.BSc. UNDER AUTONOMY

SEMESTER II PAPER I

Objectives:

- To understand forecasting techniques to predict future trend in time series
- To understand concept of index numbers to calculate real income and dearness allowance,

Course Code	Title	Credits
SIUSSTA21	DESCRIPTIVE STATISTICS II	2 Credits
		(45 lectures)
UNIT I: COR	RELATION AND REGRESSION ANALYSIS	15 Lectures
	ency distribution, marginal and conditional distribution, Scatter	
•	ble chart. Product moment correlation coefficient and its properties.	
1	nk correlation (with and without ties).	
Ū	on. Fitting a straight line by method of least squares. Coefficient	
	on .Relation between regression coefficients and correlation	
coefficient.		
-	es reducible to linear form by transformation. Fitting a quadratic	
	od of least squares.	
UNIT II: TIM		15 Lectures
Definition of ti		
Exponential Sr		
Estimation of trend by: Freehand curve, Method of semi averages, Method of		
Moving averages, Method of least squares (linear trend only).		
Merits and demerits of these methods.		
Estimation of seasonal component by, Method of simple averages, Ratio to moving average method, Ratio to trend method.		
	1.5.7	
	DEX NUMBERS	15 Lectures
	as a comparative tool. Stages in the construction of Index	
Numbers. Simple and Composite Index Numbers. Simple and weighted aggregate		
index numbers. Simple and weighted average of relatives.		
Special index numbers: Laspeyre's, Paasche's, Marshal-Edgeworth's, Dorbisch &		
Bowley's and Fisher's Index Numbers.		
Quantity Index Numbers and Value Index Number. Time reversal test, Factor reversal test, Circular test.		
Fixed base Index Numbers, Chain base Index Numbers, Base shifting, Splicing.		
Cost of living i	ndex number, Concept of real income.	

SEMESTER II: PRACTICALS BASED ON COURSE SIUSSTA21

1.	Correlation analysis
2.	Regression analysis
3.	Correlation & Regression analysis
4.	Curve fitting
5.	Time series I
6.	Time series II
7.	Index number-I
8.	Index number-II
9.	Use of MS Excel

PAPER II

Objectives:

- To understand the importance of Bell curve and other distributions used in data analysis in industry.
- To assess population characteristics on the basis of sample using estimation and testing theory.

Course Code	Title	Credits
SIUSSTA22	STATISTICAL METHODS II	2 Credits
		(45 lectures)
UNIT I: CON	UNIT I: CONTINUOUS RANDOM VARIABLES	
Definition of co	ontinuous random variable, probability density function and	
cumulative dist	tribution function. Graphical representation and properties.	
Expectation of	a continuous random variable, Properties.	
Raw and centra	al moments, Relationship between them (up to order 4).	
Measures of lo	cation, dispersion, skewness and kurtosis.	
UNIT II: STA	NDARD CONTINUOUS DISTRIBUTIONS	15 Lectures
Uniform, Expo	nential (with location, scale parameter) and Normal distribution.	
Derivations of	mean, median and variance of Uniform and Exponential	
distribution. La	ack of memory property of exponential distribution.	
Properties of N	formal distribution. Use of normal tables. Normal approximation to	
Binomial and H		
UNIT III: ESTIMATION AND TESTING OF HYPOTHESIS		15 Lectures
Parameter, stat		
standard error	of an estimator.	
Central Limit theorem (statement only).		
Sampling distributions of sample mean and sample proportion. (For large sample only)		
Point and Inter	val estimate of mean and proportion based on single sample of	
large size and difference between two means and proportions based on large sample sizes.		
Null and altern errors, Critical		
Applications of mean and popu population pro		

SEMESTER II: PRACTICALS BASED ON COURSE SIUSSTA22

1.	Continuous distributions
2.	Standard Continuous distributions
3.	Normal distribution
4.	Point and Interval Estimation
5.	Large sample tests
6.	Demonstration of Central limit theorem (Excel)
7.	Use of MS Excel

REFERENCES:

- 1. Agarwal B.L. (1978). *Basic Statistics*: New Age International Ltd.
- 2. David S.(1994). *Elementary Probability* : Cambridge University Press.
- Goon A.M., Gupta M.K.& Dasgupta B. (1968). *Fundamentals of Statistics*, Volume II: The World Press Private Limited, Calcutta.
- 4. Gupta S.C.& Kapoor V.K.(2007). Fundamentals of Mathematical Statistics: Sultan Chand & Sons
- 5. Gupta S.C.& Kapoor V.K.(2014). Fundamentals of Applied Statistics: Sultan Chand & Sons
- 6. Hoel P.G.(1947). Introduction to Mathematical Statistics: Asia Publishing House
- 7. Hogg R.V. & Tannis E.P.(1977). Probability and Statistical Inference: McMillan Publishing Co. Inc.
- 8. Kothari C.R.(1985). Research Methodology: Wiley Eastern Limited.
- 9. Medhi, J. (2013). Statistical Methods, An Introductory Text. Second Edition: New Age International Ltd.
- 10. Pitan Jim. (1977) . Probability: Narosa Publishing House.
- 11. Spiegel M.R. (1961). Theory and Problems of Statistics. Schaum's Publications series: Tata McGraw-Hill.

EXAMINATION PATTERN

Internal Assessment of Theory per Course per Semester

1. Class Test	20 Marks.
2. Project / Assignment / Presentation etc.	20 Marks.

Semester End Theory Examination per Course

At the end of the semester, examination of 2 hours duration and 60 marks based on the three units shall be held for each course.

Pattern of Theory question paper:

There shall be four compulsory questions of 15 marks each (with Internal Option). Question 1 based on Unit I, Question 2 based on Unit II, Question 3 based on Unit III. Question 4 based on all three units.

Semester End Practical Examination per Course

1. Journal10 Marks.2. Practical Examination40 Marks.At the end of the semester, practical examination of 2 hours duration and 40 marks shall be held for each course.

Pattern of Practical question paper:

There shall be four compulsory questions of 10 marks each (with Internal Option). Question 1 based on Unit I, Question 2 based on Unit II, Question 3 based on Unit III. Question 4 based on all three units.